

Student Guide to the Physics Department

Contact Information

Mr. T. Cooke DLR 121B, ext. 2028; tcooke@sbu.edu Dr. J. Kiefer, Chairman DLR 120B; ext. 2671; jkiefer@sbu.edu Dr. James M. Pientka DLR 121A; ext. 2007; jpientka@sbu.edu Dr. J. F. Neeson, Professor Emeritus DLR 120A; ext. 2672; jneeson@sbu.edu

Facilities

Area 9

Area 9 is located in DLR 9. It is used by Physics majors as a study/tutorial room. There are desks and a networked computer in the room. Upperclasspersons have first choice of the desks.

Computer Room (DLR 22)

The departmental computing room is DLR 22. Several new networked workstations are stationed in room 22, reserved for the exclusive use of Physics and Pre-Engineering majors. Students taking courses offered by the Physics Department use them, also. The facility includes inkjet printers.

[See the **Guide to the Physics Department Computing Facilities** for information on the use of the departmental computers.]

Library

The Physics Department does not maintain a library separate from the Friedsam Library.

Class Rooms

DLR 1 is a combination lecture & lab classroom. Physics classes are held in room 1, as well as the Physic 113 class.

DLR 2 is the Introductory Physics Lab [Phyl 103 & 104] classroom.

Occasionally upper division Physics classes are held in room 2 also.

DLR 3 is the advanced Physics Lab classroom.

DLR 20 & 24 are larger classrooms. Physics classes sometimes meet in these rooms.

Observatory

The Physics Department operates the SBU Observatory, which is equipped with an 11 inch Schmidt-Cassegrainian telescope. Interested students are permitted to use the observatory facility. There is an Astronomy Club!

Remarks

Here are some things to do which will increase ones chance of academic success.

i) Hang out in Area 9. Interact with ones peers. Also, information about registration, as well as other announcements, may be posted in Area 9.ii) Know ones academic advisor.

iii) Consult with the professors early on, especially in the Phys 103 & 104 classes to get comfortable early with consulting the course instructor(s). iv) Ask questions. About anything.

v) Keep an eye on the departmental bulletin boards—announcements, homework and exam solutions may be posted.

vi) Keep an eye on the course pages in Moodle—course information may be posted there.

Note: this old map does not show the new Walsh Science Center addition to De La Roche Hall.

Guide to the Physics Department Computing Facilities

Rev 7.0

A. Organization

- 1. The computers in room 22 are newly acquired HP workstations. They share the inkjet printer in the room. They are all connected to the campus network.
- 2. The computers stationed in room 2 are used in the Phys 103/104 Introductory Physics Lab classes. These units form a wireless workgroup, sharing a printer.
- 3. A networked computer is located in room 9 for the general use and convenience of Physics majors.

B. Software

- 1. Web browser: The units have Internet Explorer installed.
- 2. *MS Outlook*: The SBU MS-Outlook e-mail service is accessed through the web browser(s). The web address is https://webmail.sbu.edu/exchange.
- 3. *MySBU*: The *my.sbu.edu* web portal is accessible from the units in room 22 & Area 9 & room 2.
- 4. Applications: Some or all the units have the following applications installed: *MS-Word & Excel & PowerPoint*; *Derive; AutoSketch; MathCad*; *MatLab.*

C. Remarks

- 1. Since many persons use these computers, it is not advisable for a student to leave his or her files on the hard drives nor on the desktop. In any case, the hard drives are not large. Use the on-line storage space provided by Tech. Services or a USB drive to save your files.
- 2. From time to time, a class will be occupying room 22. Watch for posted notices, and plan accordingly.

Physics Department

Click to advance

Physics

The program in **Physics** provides a thorough grounding in fundamental physics, developing the skills essential for graduate study in physics or engineering, for industry, for government service, and for teaching.

The program in **Engineering Physics** provides a thorough grounding in fundamental physics, while also providing exposure to engineering disciplines, particularly mechanical and electrical engineering. Engineering physics students develop the skills essential for graduate study in physics or engineering, for industry, for government service, and for teaching.

DEGREE REQUIREMENTS

B.S. – Physics (Engineering Physics)

		0 0 1	/
	Credits		Credits
Required Academic Credits		Required Physics & Engineering Courses	
Physics	32	Introductory Physics	6
Engineering	9	Introductory Physics Lab	2
Mathematics	18	Analytical Mechanics	3
Chemistry	8	Electricity & Magnetism	б
Foreign Language 202*	3	Thermodynamics	3
Intellectual Journey	3	Experimental Physics	3
University Forum	2	Modern Physics & Introduction to Quantum Mechanics	3
CLAR Courses	25	Computational Physics	3
Composition & Critical Thinking	6	Quantum Mechanics/ Physics Elective	3
Electives	12	Physics 490	0
		Introduction to MatLab®	3
		Engineering Mechanics	3
		Electronics	3
	Total 120		

Real Experience

Through Internships and through the NSF-funded Research Experience for Undergraduates Program

Here are some sample REUs:

Magnetic Nanoparticles

University of Idaho

Jacob Donius M. Kaur, H. Han, Y. Qiang

Boxes: Closed and Open

Sirius Satellite Orbit

My Project

- Measuring the performance of a representative sample of Sirius radios with respect to their ability to detect a good quality signal(volume and clarity) as a function of location as recorded by GPS
- Built seven boxes with seven different types of Sirius radios to test serviceability
 - Used different models and years of the radios so the information gathered would apply to the entire driving public
 - Had to build boxes so that all seven radios could run at the same time and test how well each was getting service when driven through the streets before FM5 starts transmitting and again after it is in operation

Ferromagnetic Resonance Measurements on Thin GaMnAs Films

Introduction and Motivation

•Ferromagnetic semiconductors have been under intense investigation because of the likelihood of their "spintronic" applications

•Understanding of magnetic anisotropy in these materials is of critical importance •Our motivation is to see whether the magnetic anisotropy of Ga1*Mn*As depends on layer thickness •For this purpose we use ferromagnetic resonance (FMR), which is a powerful method for studying magnetic anisotropy in thin ferromagnetic semiconductor films

Semiconductors and Spintronics Electron has spin and charge Coupling electron spin and charge leads to faster processing speeds and greater data storage (These devices take advantage of electron spin for

Theoretical Model

ST. BONA

UNIVERSI

$\frac{2}{2}$ 2H $\frac{2}{3}$ cos² cos² $\frac{2}{1}$ sin ? sin ? $\frac{2}{10}$ cos²? ? $\frac{3}{10}$? $\frac{2}{10}$ 2 $\frac{2}{10}$ cos²? ? $\frac{2}{10}$ cos²? $\frac{2}{10}$ cos²? ? $\frac{2}{10}$ $\begin{array}{c} \frac{2M_{2}^{2}}{2} \frac{1}{2} \frac{1}{4} H_{4} \cos^{4} ? ? \frac{1}{2} H_{4} \frac{1}{4} \frac{1}{3} ? \cos 4? \sin^{4} ? ? H_{2} \sin^{2} ? \sin^{2} \frac{2}{3} ? \frac{2}{3} \frac{2}{3} \\ H_{2} ? & - \text{Perpendicular uniaxial anisotropy} \end{array}$ $H_{2,\mu}$ – In-plane uniaxial anisotropy

 $H_{4,2}$ – Perpendicular cubic anisotropy

 $H_{A,\mu}$ – In-plane cubic anisotropy

$\frac{37}{9?}\frac{3^2}{7}?\frac{1}{M_s^2\sin^2?}?\frac{3^{\frac{1}{2}}r^2F?^2F}{9??^2???^2}?\frac{3^{\frac{1}{2}}r^2F}{9???????}?\frac{3}{7}\frac{3^{\frac{1}{2}}r^2F}{9???????}\frac{3^2}{7}$ $\frac{?F}{??}?0$ $\frac{?F}{??}? 0$

Theory Behind FMR

Probes Magnetic moment of electron Microwaves Shot at Sample to disturb alignment of magnetization

In-plane uniaxial anisotropy H_{2//} of as-grown and annealed samples

Conclusions

Surface anisotropy plays an important role in thin GaMnAs samples In-plane uniaxial anisotropy strongly depends on sample thickness Curie Temperature around 170K, Room Temperature is 293K FMR remains a powerful technique

•Stoner-Wohlfarth model

Ion Beam Bunching

By: Mary Harner, Itzik Ben-Itzhak, Kevin Carnes, and Ben Berry Kansas State University

NEGATIVE MAGNETOCAPACITANCE IN SCHOTTKY BARRIE

OBJECTIVES FOR RESEARCH

Department of Physics at St. Bonaventure University Research performed at the University of Florida, Summer 2007

WHAT IS A SCHOTTKY BARRIER?

semiconductor. In this research a gallium arsenide sample was used as the semiconductor.

SO WHY DID WE LOOK AT SCHOTTKY BARRIERS?

- They are common in semiconductor based industry.
- You can do a lot more with them because they are nonlinear and function like a one way valve.

 The sensitivity of Schottky devices to externally applied magnetic fields has not been studied.

FASISCATION OF SAMPLE Some or point Some or point

After being cut the gallium arsenide sample is first cleaned in a sonicator. Then the "Miller" system is used to make depositions of palladium, germanium, titanium, and gold. A rapid thermal annealing oven anneals the sample. After a second deposition of gold, the physical properties measurement system is used in conjuncture with the program Lab View to take data.

NEGATIVE MAGNETOCAPACITANCE

Megative magnetic field. Negative refers to the negative slope, as seen below.
 Negative magnetocapacitance without directional dependence was found to be the same in three samples.

CAPACITANCE SHOWED FREEZE OUT

silicon doped gallium arsenide

FINISHED SAMPLE

Negative magnetocapacitance

- No directional dependence
- The hope is that this may be useful for understanding the nature of Schottky barriers.
- Understanding the sensitivity of Schottky devices to externally applied magnetic fields could impact computer circuitry.

Histogramming algorithm for muon standalone reconstruction in the CMS detector

THE MUON CHAMBERS

- The muon chambers are composed of 4 stations separated by iron shielding.
- Each station has 3 superlayers: 2 measure perpendicular to the beam and 1 measures the parallel coordinate.
- Each superlayer has 12 rows of drift tubes. Ł

chambers in view

THE DRIFT TUBES

- The drift tubes are composed of a long hollow negatively charged tube with a positively charged wire running along its center.
- Charged particles strip electrons off of atoms of the gas in Æ the tube creating a small current we detect. This is called a "hit"

For simplicity, the drawing to the left depicts the drift tubes having a rectangular cross section: however. the actual drift tubes in CMS have a hexagonal cross section

Trov Mulholland '11 **REU Advisor: Dr. Ivan Furic Department of Physics, University of Florida**

INTRODUCTION

- The Large Hadron Collider is set to produce 7 TeV z proton beam energies by this summer.
- This beam energy is 7 times the previous record set by Æ the Tevatron; however, this increase in energy introduces the obstacle of particle showering.
- The present muon reconstruction algorithms can be × easily confused by additional detections generated by a shower.
- We propose a histogramming algorithm to account for z the additional showering effects.

PARTICLE SHOWERING

- A highly energetic particle through a medium will emit a photon through a process called Bremmstrahlung. The photon then interacts with matter producing an electron positron pair through a process called pair production.
- The muon has enough momentum so that it is not deflected z by this process; however, the secondary electrons and positrons will induce detections in the drift tubes

showing a muon showering

THE ALGORITHM

- The program was written in the C++ programming language using ROOT and CMS Software.
- By computing ?² for each detection and plotting only when C - ?² is positive, we spread out the resolution of the detection.
- When this is iterated over all hits, a spike results in the direction of the muon.

PERFORMANCE AND SEEDING

- A good event records a maximum of 200 or higher. If we extract the maxima from several events, we can study the efficiency of the algorithm. The curve is Gaussian showing a 97% chance the event will record a maximum of 200 or higher.
- In order to implement the algorithm for future studies, we need to know the direction and momentum of the particle. This is called a seed. The direction is known from the maximum of the event; the momentum is found by obtaining the change in phi angle across the stations.

- Higher LHC energies bring a closer look into new z physics; however, they also bring the likelihood of muon showering.
- Our algorithm uses a histogramming technique to account for this showering.
- Future studies include putting the algorithm into a fitter so that further performance and efficiency studies can be done. Also, the same histogramming technique can be done to reconstruct muons in the cathode strip chambers of the endcap region of the detector.

Period Decrease in the Near-Contact Binary System UU Lyncis

Olivia Mulherin^{1,2} and Eric G. Hintz²

St. Bonaventure University¹, NY and Brigham Young University², UT (REU Program)

Abstract

The near-contact binary UU Lyncis has a known decreasing period as the stars move closer together. We report 10 new times of primary minimum for this system from photometric data gathered from the BYU David Derrick 0.4-m telescope and BYU West Mountain Observatory 0.9-m telescope. Using this data we refine the period change for the system and examine a small oscillatory variation in the O-C diagram. The modified period change and interpretations of the small variations will be reported.

Figure 1. UU Lyncis, center, contains Ftype and K-type components. RA is 09 15 31.00 and Dec is +42 42 12.0

Table 1. Data collected from BYU. The table includes observed and calculated primary times of minimum, as well as epoch

54221.72914 54221.0 0.07646 6091 6170 54593.68555 сср 54593. 0.07659 54934 0.07578 6243 54934.72275 сср 6244 54940.81331 CCD 54940. 0.07638 62448 54941 74979 сср 54941.6 0 07594 54978.6 0.07580 6252 54978.75790 сср 55305.6 6322 55305.74279 сср 0.07645 63227 55306.68019 CCD 55306.0 0.07693 55313.70576 ccn 55313.6 0.07562 63243 66264 56729.60600 CCD 56729.31 0.29337

O Type

0-C

Figure 2 Graphing HID Observed vs. Epoch allows us to a calculate refined period for UU Lyncis. This uses only the data points in Figure 1. The period of UU Lyncis is .4684588 davs.

Figure 3 Graph of 0-C Diagram vs. HJD Calculated using period found in Fig. 3. Red points show small oscillatory variation in diagram. The rate of change of the period is -4.8998e-11.

Observation and Photometry

The photometric data for UU Lyncis has been gathered from the BYU David Derrick 0.4-m telescope and BYU West Mountain Observatory 0.9m telescope. Observations were taken using B and V filters. All of the data was reduced using IRAF's aperture photometry package. We used differential photometry to measure the magnitude of UU Lyncis.

Analysis

Using only the newest datapoints listed in Table 1., we refined the period for UU Lyncis in Figure 2., and

created a new O-C diagram in Figure 3. For comparison, we also refined the period and created an O-C diagram using both the new and previously published data points in Figure 4. and Figure 5. The

red points on the O-C diagrams include 10 new primary times of light minimum found at BYU, and appear to be sinusoidal. We tested this oscillatory variation for general relativistic effects using the post-Newtonian method for solving the two-body problem in general relativity, but the results were negligible. The next step is to observe UU Lyncis for

a third star by taking and observing new data frames for a visible third star, and by observing its light curve's for transients . Figure 6. shows a light curve created using data from May 5, 2010, where a primary minimum occurred. The time where the minimum occurred appears to be flattened, and could mean that UU Lyncis experienced a total eclipse. The phase curve in Figure 7. shows that UU Lyncis's components are orbiting around each other quickly; there are smooth, curved transitions from eclipse to eclipse.

Figure 4. A graph of HD Observed vs. Epoch using all data points for UU Lyncis. The period of UU Lyncis using all data points is .468460 days.

Figure 5. Graph of O-C Diagram vs. HD Calculated using period found in Fig. 5. Red points show small oscillatory variation in diagram. The rate of change of the period is -4.4687e -11.

..... 1100 -1.00 • 11 m 12.88 123.88 -1404 -344 + 25.000 11.00 100 11.01 1140 Passe

Figure 6. Light curve for UU Lyncis on May 5, 2010. Also seen in phase curve below. The flattened minimum could mean that UU Lyncis experienced a total eclipse.

Figure 7. Phase curve for UU Lyncis for nights in 2010 using B and V filters

Recent graduates have gone on to:

Syracuse University The University of Florida Drexel University The University of Colorado Dresser-Rand US Army Engineers Kansas State University SUNY-Cortland The University of Dayton The University of Texas-El Paso New Mexico State University National Basketball Association Texas Tech University

Careers

University Faculty Secondary Education Electrical Engineering Mechanical Engineering Software Engineering **Material Science Electro-Optics Civil Engineering** Medicine **Bio-Engineering Construction Management**

Why is it a *bad* idea to major in Physics?

